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In the framework of the weak-thermal-expansion approximation, a potential flow model is employed
as an analytical tool to study the dynamics of wrinkled, nearly spherical, expanding premixed flames.
An explicitly time-dependent generalization of the nonlinear Michelson-Sivashinsky (MS) equation is
found to control the evolution of the flame wrinkles. The new equation qualitatively accounts for the hy-
drodynamic instability, the stabilizing curvature effects, and the stretch of disturbances induced by flame
expansion. Via a linearization and a decomposition of the flame distortion in angular normal modes, it is
first shown, in agreement with classical analyses, that the above mechanisms compete at first to make the
small disturbances of fixed angular shapes fade out in relative amplitude, and subsequently result in an
algebraic growth. Following that, the linear response to small forcings of fixed spatial wave numbers is
investigated and exponential growths are obtained. By using a separation of variables, then the pole-
decomposition method, the flame evolution is converted into an N-body dynamical system for the com-
plex spatial singularities of the front shape; an infinite number of initial condition dependent, exact solu-
tions to the generalized MS equation are then exhibited. Each of them represents superpositions of lo-
cally orthogonal patterns of finite amplitudes which are shown to ultimately evolve into slowly varying
ridges positioned at fixed angular locations. The corresponding flame speed histories are determined.
Examples of nonlinear wrinkle dynamics are studied, including petal-like patterns that are nearly self-
similar asymptotically in time, but in no instance could one observe a spontaneous tendency to repeated
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cell splitting. Open mathematical and physical problems are also evoked.

PACS number(s): 47.20.Ma, 82.40.Py, 47.54.+r

I. INTRODUCTION

As review articles [1-3] or textbooks [4,5] remind us,
most of the known instabilities of premixed flames were
first identified in the context of a weakly perturbed planar
front. Among these, one may single out the hydro-
dynamic instability discovered by Landau [6] and Dar-
rieus [7] because it is almost always potentially important
when fast enough flames and long wavelengths are con-
cerned. In the geometrical framework of a nearly planar
flame, Sivashinsky [8] was even able to get a good insight
into the dynamics of wrinkles of finite amplitude, when
wrinkling is solely due to the Landau-Darrieus instabili-
ty; his analysis (see also Ref. [9]) led to the so-called
Michelson-Sivashinsky (MS) equation which, in its one
dimensional standard form, reads as

¢+ 30" =pudxx +1(¢,X) ,

1 p” ¢x(nZ)
g, X)=— Jﬂ_m ~—7 92
(7, X, and ¢, respectively, represent reduced time, trans-
verse coordinate, and flame shape; >0 is a constant
coefficient; and the subscripts denote partial derivatives).
A formally identical equation previously cropped up in
plasma physics [10] and the overall properties of its solu-
tion were first investigated numerically in that context
[11]. Upon numerical integration with periodic boundary
conditions [12], (1.1) often ultimately leads to a steady
flame shape with the maximum available wavelength,

(1.1
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even when the wavelength markedly exceeds that of the
most amplified small disturbance of a plane flame. This
somewhat paradoxical result can be explained by a mech-
anism first proposed by Zel’dovich et al [13], and soon
extended to other curved interfaces [14,15]. The local
disturbances of a steady curved flame are indeed shifted
by the geometry-induced, or real, nonhomogeneous ad-
vection along the front, while their wavelengths (hence
their growth rates) are modified by local tangential
stretch. As a result, steady curved flames in a tube or the
large-scale steady solutions relative to the MS equation
may be linearly stable though they are locally nearly pla-
nar. The above theory and its numerical confirmation
[16] devoted to the MS equation show that the model of a
planar flame, though sufficient in enabling us to under-
stand the local instability mechanisms, is too restrictive
to capture the wrinkle fate; in the limit of long times the
local flame dynamics is affected, if not driven, by the
large-scale front geometry. Thus, a strong motivation ex-
isted for studying in detail generalizations of the MS
equation pertaining to other large-scale geometries.

As for nearly parabolic, perturbed flame shapes, a step
in this direction has been made [17]. In the linear
domain, quantitative agreement with the numerical re-
sults of Denet [16] has been obtained; furthermore, non-
linear analogs of the WKB results of Zel'dovich et al.
[13] have been displayed analytically, after study of a
generalized version of the MS equation which formally
differed from (1.1) by the inclusion of a convectivelike
term SX¢y, with S >0, on the left hand side. The latter
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did reinforce the conclusion that the overall geometry is a
very important ingredient of flame dynamics; if strong
enough, the wavelength stretch may lead to metastability
phenomena, the consequences of which show up as secon-
dary randomlike subwrinkles in numerical (hence neces-
sarily slightly noisy) integrations of (1.1) when the in-
tegration domain is wide enough [18]. Despite the
aforementioned investigations, however, one is not yet
able to understand the overall dynamics of all weakly
curved, evolving flames; the statement is a fortiori true if
propagations in fluctuating media are thought of.

The present paper details with the case of nearly spher-
ical, expanding flames which, at least apparently, are the
most simple evolving structures. As is well known, this
model is quite attractive because of its symmetry and be-
cause the flame surface is closed; in addition, this
geometry can be obtained fairly accurately in experi-
ments when the initial mixture is quiescent and ignition is
triggered by a localized energy deposit [19,20]. This
geometrical framework also seems to be a good starting
point in investigating the expansion of closed flames in
moderately turbulent flows, a phenomenon that one
ought to understand for fundamental [19] as well as prac-
tical [21] reasons, not to mention the safety considera-
tions.

It is not that one ignores everything about the stability
of spherically, expanding flames. On the contrary, the
pioneering normal-mode linear analysis of Istratov and
Librovich [22] and the more accurate one recently per-
formed by Bechtold and Matalon [23] have shown that
the time-dependent stretch induced by expansion does al-
ter the dynamics of disturbances of small amplitude.
This is due to a linear increase of their wavelength with
time, and any disturbance of a given angular shape first
decays in amplitude (relative to the flame radius) and
then ultimately grows algebraically. In addition, the
aforementioned studies identified a particular angular
mode, the relative amplitude of which has the shortest
period of decay; presumably, it should correspond to the
one that is observed at the threshold of instability. In
fact, though quite accurate, the most recent analyses of
this kind markedly underestimate the flame radius at the
visual onset of the instability and the rank of the angular
harmonics involved at this instant [20]. The effect of
finite amplitudes has been invoked [5] to account for this
kind of discrepancy, but no thorough investigation is yet
available.

To progress in this problem, further nonlinear studies
may be warranted; the present paper is an attempt in that
direction. Upon use of the weak-thermal-expansion ap-
proximation [8], a time-dependent generalization of the
MS equation is first derived which formally differs from
(1.1) by the inclusion of a convectivelike term X ¢y /7 on
the left hand side. In the linear domain, results that are
qualitatively similar to the previously referred to
normal-mode analyses of expanding flames are found.
The linear flame response to external disturbances of
fixed spatial wavelength is then considered, and exponen-
tial growths, hence ultimately faster than the algebraic
ones, are predicted.

Furthermore, the MS equation (1.1) and its two

2031

aforementioned generalizations share a useful property in
the nonlinear domain, namely, by using the pole-
decomposition method, an infinite number of exact,
finite-amplitude solutions can be found for each of them.
Presumably invented for the Korteweg—de Vries (KdV)
equation [24] and later adapted to various other models
[25,26], the method allowed Thual, Frisch, and Henon
[27] to solve the MS equation (1.1) and to explain struc-
tures previously revealed by numerical means only; the
corresponding increase in flame speed which is induced
by the instability also turned out to be easily accessible
[28]. Here, we employ the same approach to analyze how
finite-amplitude disturbances of a steadily expanding
flame spontaneously evolve. It will be shown that,
despite information obtained in the present article, this
seemingly simple problem still remains somewhat puz-
zling. It seems more and more plausible, however, that
externally induced disturbances play a crucial role.

When this paper was in its final stage of preparation,
this author became aware of the interesting related
research undertaken by Filyand, Sivashinsky, and Frank-
el [47]. Specifically, the authors of [47] considered the
dynamics of nearly cylindrical expanding flames by
means of a model evolution equation for the flame shape,
which is structurally similar to that derived in the present
paper [Eq. (7.2)], and then integrated it numerically by a
pseudospectral method. They found that small random
initial corrugations first evolve to a few ridges which stay
angularly fixed; then at a late stage (about 35 times the
time singled out by an analysis a la Istratov-Librovich
[22]; see Sec. VI A) the front becomes suddenly covered
with small-scale cells and ultimately undergoes a progres-
sive fractalization.

The paper is organized as follows: Sections II and III
are, respectively, devoted to posing the problem and to
choosing the orders of magnitude involved in the small-
expansion approximation. The evolution equation is then
obtained (Sec. IV) and its symmetric solution introduced
(Sec. V). In Sec. VI linear analyses of stability and
response are reported and discussed. The pole-
decomposition method is presented (Sec. VII) and its
consequences are analytically studied in different situa-
tions (Secs. VIII, IX, and X). After presenting prelimi-
nary numerical results on pole motions (Sec. XI), con-
cluding remarks are made and some open problems are
evoked (Sec. XII).

II. MODEL AND BASIC EQUATIONS

The present paper is devoted to wrinkled flames ex-
panding from a center (Fig. 1). A key grouping in our
analysis is the density contrast ¥ built upon the unburned
gas density (p,) and that of the burned medium
(pp <pu): Y=(p,—ps)/p,. We will formally consider y
as a small parameter, even though realistic values are of
about 0.8 (p, =5p,; ), because the small-y limit is the only
systematic procedure available to us to study the evolu-
tion of wrinkles of finite amplitudes analytically while
still retaining the Landau-Darrieus instability mechanism
which y >0 brings about. Furthermore, it gave qualita-
tively good results in the case of nearly planar fronts
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FIG. 1. Sketch of expanding flame and coordinate systems.

(8,29]. The main simplifications brought about by the as-
sumption ¥ <<1 can be summarized as follows.

(i) The induced flow field disturbances by wrinkling are
potential to leading order in ¥ on both sides of the flame
front [8,9].

(ii) the Landau-Darrieus instability is weak (it disap-
pears when ¥ =0) so that the stabilizing influence of
nonlinearity already operates when the wrinkles have an
O(7), hence small, amplitude compared to their wave-
length [8]. A weakly nonlinear analysis is then adequate.

(iii) Once again due to the weakness of the Landau-
Darrieus instability, the dependency of the local flame
speed upon local front curvature [30,31] confines this in-
stability to a range of wavelengths that are long com-
pared to the flame thickness d =D, /u; based upon the
thermal diffusivity D, of the fresh mixture and the lami-
nar burning speed u; .

On a more practical level this means that, in the
small-y limit, one can qualitatively capture the conse-
quences of the hydrodynamical instability by considering
a weakly wrinkled flame surface separating piecewise-
incompressible media in which potential flows prevail,
and which propagates itself at a curvature-dependent ve-
locity into the fresh medium. Of course, as (i)—(iii) only
hold when y << 1, the dynamics obtained in this manner
must be specialized to the small-y limit for sake of con-
sistency. More specifically, we write the velocity field u
as

u= gradV , 2.1

where, because of piecewise incompressibility and the
continuity equation, divu=0, the velocity potential V
satisfies

Vv =0. (2.2)
In the case of flames that expand approximately radially
from about the origin (r =0) of the coordinates (Fig. 1), V'
will vanish at infinity (r = o) if, as we assume here, the
fresh medium is at rest at the initial time  =0. Further-
more, because of the gas expansion across the flame,
V(r,t) undergoes a jump in normal gradient, whereas V'
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itself and its tangential gradient are continuous. At a lev-
el of accuracy compatible with a leading order analysis in
the small-y limit, it is enough to assume [9]

.

[un]=u, — (2.3)

[u-t]=0, (2.4)

where t is any tangent vector to the front, n is the unit
normal vector pointing towards the burned gases, and the
notation [ f] means

f(burned side)— f(fresh side) .

Equations (2.3) and (2.4) correspond to the continuity and
tangential momentum balances across a thin flame, re-
spectively.

Once complemented with the requirement of bounded-
ness of V at the origin (there is no source or sink of fluid),
Egs. (2.1)-(2.4) allow one to compute ¥ and then u for
any prescribed flame shape. The latter is constrained by
the kinematic relationship

n-(u—D)gey=u; [1—L(1/R,+1/R,)], (2.5)

which involves the flame velocity D, the local curvature
(1/R;+1/R,) of the front (taken >0 for an expanding
spherical flame). The proportionality coefficient (L) be-
tween curvature and local changes in normal burning
speed n-(u—D)g.q, is the so-called Markstein length [30].
It is taken positive, is essentially proportional to the actu-
al thickness (d) of the front, and is supposedly known in
advance for each mixture, from measurements [32] or
analyses of the inner flame structure [31]; typically, .£ /d
ranges from 4 to 8 for usual hydrocarbons burning in air
[32,33].

III. ORDERS OF MAGNITUDE

We found it convenient to introduce scaled variables of
order unity which will automatically specialize the reso-
lution of (2.1)-(2.5) and the corresponding results to the
limit y —»0%.

A. Space scales

Studying nearly flat flames for y <<1 revealed that
both the marginally stable and the most rapidly growing
flame shape disturbances have O(d /y) wavelengths [7].
We shall assume that the relevant wrinkles still have this
size. As a consequence, the range of hydrodynamic dis-
turbances due to wrinkling corresponds to a strip of
O(d /y) width about the front; then, it is natural to intro-

duce the new radial coordinate £ by
r=uyt+2d&/y , uy=u;/(1—vy), (3.1

where the factor of 2 is used for future convenience and
the first term on the right hand side of (3.1) is the radius
of a flame expanding at a constant velocity.

B. Time scale

Over the range of O(d /y) wrinkle wavelengths, the
growth rate pertaining to nearly planar fronts is
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O(y*u; /d). Accordingly, we shall employ

T=tu;y*/4d 3.2)

as O (1) reduced time (the factor of 4 is also here for fu-
ture convenience). For 7=0(1), the flame radius r is
0O(d /y?*) and hence large compared to the width of the
layers corresponding to £=0(1) and to the flame front
thickness d. This justifies self-consistently why we em-
ploy results from nearly planar flames in estimating the
scales involved.

C. Angles

From the O(d /y?) flame radius and the O(d /y ) wave-
lengths, one deduces that O(y) ranges of polar angles
6',0" are involved. To avoid the artificial singularities
brought about by an arbitrary choice of coordinate orien-
tation near the north and south poles of spherical coordi-
nates, one is lead to focus on a patch of flame front near
the equator (Fig. 1) and to introduce the scaled angles

(o',0")=2(60'0"—m/2)/y . (3.3)

D. Amplitude of wrinkling

The flame front will be described by the representation

r=uyt—d®(r,0’,0";y) (3.4)

(i.e., 2= —y®) so that & >0 corresponds to the burnt
side. As indicated in the pioneering work of Sivashinsky
[8], the dominant nonlinearity is that brought about by
Huygens’ propagation (i.e., by the difference between n-D
and —r-D/r), and it manifests itself when the wrinkles
have an O(y) amplitude to wavelength ratio. We are
thus led to anticipate that

®(r,0',0",y)=®(1,0',0")+0(1),

where ®(7,0',0"")=0(1) in the limit y —»0%.

(3.5)

E. Flowfield disturbances

When curvature effects are absent (.L/d=0), Egs.
(2.2)-(2.4) admit a spherically expanding flame of con-
stant velocity [r=u;t/(1—)], which corresponds to a
potential ¥=const in the burned gases and to
V=—ulyt?2/r(1—y)? outside. On the other hand, it is
known from the original analyses of Landau [6] and Dar-
rieus [7] that the velocity disturbances due to a wrinkle of
O(d) amplitude and O(d/y) wavelength is O(u;y?).

One is thus led to write
V=V(r,t)+u,y dw(r,0’,0",)+o(yd) , (3.6)

where w=0(1).

IV. THE EVOLUTION EQUATION

Once the scalings (3.1)-(3.5) are introduced, the evolu-
tion equation for ®(7,0’,0’’') could be deduced from the
result of Frankel [53], which is valid for any closed flame
surface separating potential burnt-unburnt flows and any
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v. For the sake of completeness, a direct derivation of
the results pertaining to the small-y case is outlined
below. When Egs. (3.1)-(3.6) are plugged into
(2.1)-(2.4) and only the leading order in ¥ is retained, one
arrives at the differential equation

Fw 1| Fw  dw

32 7 |30'? 30"
the solution of which has to fulfill the boundary condi-
tions

=0, (4.1)

lw] < e , (4.2)
w=0 at |£|=o (4.3)
and
Jw i
—a—é B =0, (4.4)
(tVw]f=—t T%% : ng’,, , 4.5)

where [f]T denotes f(£=0")—f(£=07). The above
system is easily solved upon use of Fourier transforms
with respect to o’ and o". It is even simpler to notice
that ¢’'/7 and o" /7 play the same role as transverse
Cartesian coordinates X =o0'/7 and Y=0"/7 did in the
study of nearly planar wrinkled flames [7]; one can there-
fore immediately transpose the results of Ref. [7] to ob-
tain the following expression for the velocity disturbance
U induced by flame wrinkling just ahead of the front it-
self:

U+=—%I(<I>,a) , (4.6)
where the linear operator I(,o) is defined in terms of
each angular mode ¢’¥"?, 0 =(0’,0") by

I(e® 7 ,g)=KeK7 | 4.7)

with K =(K-K)!/% for functions which depend only on
one space coordinate, I( ) has the explicit representation
shown in (1.1). Now that U™" is expressed in terms of ®,
one only has to combine it with the leading order of the
kinematic relationship (2.5), viz.,
1 yopp=£ /T
P+ 2 V| 1'2A<I>+ ; ur, (4.8)

to obtain the sought after evolution equation for ®(7,0),

o +-L|vo=Lro+lre,o)+E . @9
272 T T

2

Here, u=.L/d is the Markstein number, A stands for
9%/30'2+3?/d0""%, T as a subscript is a derivative, and
V=(8/30',0/90"). As claimed previously, the dom-
inant nonlinearity featuring in this time-dependent MS
equation has a purely eikonal origin and it comes from
expanding the nearly radial unit vector n about —r/r
[see (4.8)]. The following sections (V-XI) of this paper
are devoted to studying (4.9).
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V. THE SYMMETRIC SOLUTION
When the angular dependence of P is absent, one has
Y, =2u/7. (5.1)

The right hand side of (5.1) gives the influence of the un-
perturbed front curvature upon the local flame velocity
and is nothing but the small-y residual of the effect
quantified by Bechtold and Matalon [23] in the y=0(1)
case. As we now known it [31,33], the Markstein number
p' pertaining to be burned gas flame speed is not the same
[for y=0(1)] as that (1) based upon the fresh mixture,
because of accumulation effects within the flame front it-
self which possesses a finite, even if small, thickness.
When premixtures of air and ordinary fuels (with the ex-
ception of H,) are used, the latter Markstein length is al-
most always positive, whereas the former may be nega-
tive. This numerical difference, unfortunately, disappears
in the limit ¥ —0. Nevertheless, so as to increase the
flexibility of the model and to account qualitatively for
the aforementioned difference in Markstein lengths, we
shall allow the right hand side of (5.1) and the last term in
(4.9) to be written as 2u’ /7, where 1’ may have any sign.
This will help us formally distinguish between the
influence of the mean curvature upon the flame speed and
that due to wrinkling.

VI. LINEAR STABILITY ANALYSES

A. Angular normal modes

Provided that the flame shape disturbances are small
enough, Eq. (4.9) can be linearized about the purely radi-
al solution. One may then focus on a single angular
mode. Specifically, one writes

Q(a’,a”,r)—Zy’lnTL =ul(7)expling’'+imo')<<1,
0

(6.1)

where the “harmonic numbers” n and m may take any
real O(1) value [the spherical patch corresponding to
o’,0"=0(1) is rather arbitrary in exact size], 79>0 is
some initial time, and the small amplitude I'(7) is given
by

IF=r(K|/r—uK?*/7%), K*=m*+n?. (6.2)

One may note that ¢ =|K | /7 plays the role of an instan-
taneous wave number; that g(7)~1/7, of course, is a
consequence of the wavelength stretching induced by ex-
pansion. Equation (6.2) is integrated into

1 1
T To
where (1) is the initial amplitude. The nonexponential
growth of T also is due to ¢ ~1/7; if curvature effects
were neglected (u=0) the growth rate should indeed
have the form I" /T" ~ ¢, as dimensional arguments show it

[6].

At this stage of our investigation, one may introduce

1K1

r
— | exp

[(7)/T(7g)= [
To

uk? , (6.3)
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an argument due to Istratov and Librovich [22]. In order
that a disturbance may be seen as cropping “out” of an
expanding spherical front, its amplitude must grow faster
than the mean flame radius does. This leads to the notion
of a relative amplitude C(7)=TI'(7)/7, the evolution of
which is given by

C=Cl(K|=1)/r—puK?/7*] (6.4)
or, explicitly, by
[K|l—1
- |7 2] 1 1
C(r)/C(ry)= |— exp |uK* |——— (6.5)
To To

In a sense, the mean flame radius growth suppresses the
long-wave instability corresponding to |K|<1, even
though I'(r,|K|<1) grows limitlessly with time. Equa-
tion (6.5) is plotted in Fig. 2. When [K|>1, C(7) first
fades out, as a result of initially strong local curvature
effects (g ~1/7); C(r) is then predicted to grow, as a re-
sult of a Landau-Darrieus instability which has a weaker
and weaker ‘“‘strength” (¢ ~1/7), but is never negligible
since g(7)~1/7 is not integrable at 7= . The transi-
tion C =0 occurs at a time 7 defined by

e =uK?/(|K|—-1) . (6.6)

One first notes that 7 =u|K| when |K|>>1. In other
words, the disturbances of high enough harmonic num-
bers (K) start to grow (in terms of C) when 7 exceeds a
value which is roughly proportional to |K| itself so that
the corresponding spatial wave number K /75 =1/u cor-
responds to the nontrivial marginal mode of the linear-
ized MS equation. This is usually viewed as the root of
the cell-splitting phenomenon, which is often ultimately
observed experimentally when the flame radius gets large
enough [20,34], because the newly growing disturbances
would have a constant wavelength, whereas the flame
perimeter steadily increases. We next note that 74 ~p, so
that the appearance of instabilities is expected to be de-
layed as the Markstein constant is increased. However,
since different K’s yield different rates of growth
[C(r>>u|K|)~7KI=1], the linear theory does not indi-
cate how a phenomenon of cell splitting would manifest
itself. Equation (6.6) also shows the existence of an abso-

f. C(1)

0.5}

FIG. 2. Evolution of relative amplitude of disturbance C(7)
as given by the linear equation (6.5).
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lute minimum 7,=4p of 1g, which is attained for
|K|=K « =2 (Fig. 3) and which coincides with the short-

est growth time of disturbances in almost planar
configurations. If present at the initial times with a
nonzero amplitude, this particular mode should be the
first to be observed as a growing disturbance; according-
ly, 7=, should correspond to the onset of the instabili-
ty, if Istratov and Librovich’s criterion is correct.

One may thus say that the linearized version of (4.9)
qualitatively reproduces the same results (and hence
presumably has the same drawbacks) as the analyses of
[22,23], due to the structure of C /C which the two latter
theories share with (6.4) itself for disturbances of high
enough harmonic numbers. Hopefully, the nonlinear ver-
sion (4.9) will help us understand qualitatively why the
aforementioned studies, though accurate in the linear
domain, do not quantitatively reproduce the experimen-
tal results on the onset of instability.

B. Linear response

What was done in Sec. VIA only dealt with initial
value problems for which each angular-mode amplitude
I’ was assumed given at 7=7, However, especially in
the context of a theory of turbulent expanding flames, it
would also be quite interesting to study the linear
response of a spherical flame to an external noise, e.g., of
hydrodynamical origin, which would exhibit a fixed
wavelength. To this end, we now consider a nonhomo-
geneous, linearized version of (4.9), viz.,

FT=%AF+%I(F,0',0”)

+2u' /Tt+uexplio, 7+ik,0'T) . 6.7)

The last term in the right hand side, a single-mode forc-
ing, represents a fluctuating radial velocity component
with intensity u, >0, frequency w,, and fixed spatial wave
number k, >0. For simplicity, the “noise” is assumed to
be “independent of o,” so that F may depend only on 7
and o'. Equation (6.7) is then fourier transformed
[o'=K, F(1,0')—2p'InT=1(7,K )] to yield

— |K| Kz iwe‘r
=9 B [Tk -k . 68)
TK
1&1),:4“
0 1 K*‘=2 1 1 L 1 L 1 K
1 5

FIG. 3. The time 7 at which the relative amplitude C(7) of
an infinitesimal normal mode reaches its minimum vs angular
harmonic number K [Eq. (6.6)].
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Since only the flame response is needed here, we assume
that ¥(7=0,K)=0; the solution to (6.8) then has the form

p=enk /K [ u e U8k —k,2)

Xe HKY/Zz~IKlgz (6.9)
or, equivalently,
u Tk Kl 2
e o e T—ukKk
¢=k_eez K /k, = ] e+uK /T—pKk, , (6.10)

as 8(Z)=8(—2Z) and 8(aZ)=|a"!|8(Z). Because r>0
and k,>0, the above expression is only valid for
0" <K <k,7; otherwise, $=0. That =0 for K >k, is
a logical finding, for the above analysis of flame response
is linear and the only spatial wave numbers which may
then contribute to the flame shape are stretched versions
of k,. If the noise is switched on at 7, the results (6.10)
and (6.11) only hold for k,7y<K <k,7; otherwise, 1=0.
The above equation is best interpreted in terms of the
Fourier transform of

o X, 7)=F(X /7,7)—2u'InT ;

again, X =07 represents an arclength and k denotes the
corresponding (spatial) wave number. Given the
definition of a Fourier transform, ¥(7,k7) represents the
spatial Fourier transform of the relative disturbance am-
plitude ¢(X,7)/7. From (6.10) one deduces that
|¢(T’kT)|=7tiek£[klnl/x—ykek(l—x)]r

e

’ (6.11)

where 0 <«k=k /k, < 1. Equation (6.11) is reminiscent of
the results deduced from the “usual” MS equation, which
would imply that the 27 /k,-periodic, externally excited
disturbances of a planar flame have an amplitude I'(7)
given by

k,(1—pk, )7

L(r)~uu,e , (6.12)

when pk, <1. Comparing (6.12) and (6.11) shows that
the expansion somehow “dresses” in different ways the
respective contributions of curvature and of hydro-
dynamics to the overall rate of growth of the energy dis-
tribution. According to (6.11), for a given k, the modes
which are the fastest to grow “out” of the expanding
flame as 7— o correspond to k=k,,, where «,, is associ-
ated with the maximum exponent in (6.11) (see Fig. 4).
K,, is given by the smaller root of the following transcen-
dental equation:

1+Ink, +uk, (1—2x,,)=0, (6.13)

to be solved with the constraint 0<«,, <1 [if (6.13) has
two roots less than unity, the larger one yields a
minimum of ¥]. Once «,, is computed, the correspond-
ing value (k,) of k is available, thereby giving the
(k,,k,, ) curve in a parametric form, viz.,

pk,=—(1+1nk,,)/(1—2k,,) , pk, =k, (uk,),

0<k, <1. (6.14)
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FIG. 4. Snapshots of the power density spectrum of wrin-
kling |¢(k7,7)| when the harmonic forcing is switched on at
70>0,To<7T) " <74

Because k, >0 and «,, <1, Eq. (6.14) implies k,, <k, /e,
in any case. For uk, >>1, Eq. (6.14) gives

pk,, =e 'uk,exp(—uk,)<<1,

whereas the opposite limit pk,<<1 leads to
wk,, =e 'uk, << 1. The curve defined by (6.14) is plotted
in Fig. 5. It yields puk,, <1/4.9; this maximum value is
obtained when pk,=1, and hence corresponds to
k,,=k,/4.9.

In addition to selecting a unique, fixed k,,, thereby
leading to a phenomenon similar to cell splitting because
the flame perimeter continuously expands, the above re-
sults raise several remarks. First, one may note that any
k, leads to some amplification, in contrast to what would
happen if the same noise as in (6.7) was used in the linear-
ized MS equation: as a consequence of (6.12), the condi-
tion uk, <1 would then have to be met for amplification
to occur. The present unconditional amplification is due
to the stretch induced by expansion, which makes any
disturbance wave number decrease to zero (for seemingly
germane situations, see Refs. [35,17]), but here at a final
rate that is too low for the Landau-Darrieus instability to
be negligible in the limit of long times. Second, the wave-

Mk
91/4.92
1 pke
FIG. 5. Reduced wave number uk, of maximum

amplification (see Fig. 4) versus reduced wave number of forcing
uk,.
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length 2u/k,, of the most amplified disturbance, as is
given by (6.13), depends on both p (the mixture) and k,
(the noise). Moreover, an exponential (as opposed to alge-
braic) growth is predicted, due to the noise which con-
tinuously impresses disturbances with a constant wave-
length; this growth is faster than all those evidenced by
the normal-mode analysis, suggesting that an external
noise of approximately fixed wavelength—even if of a
weak but fixed amplitude—can ultimately have a strong
influence on the flame shape and will soon overcome that
due to initially present shape disturbances. Had we con-
sidered a noise amplitude which varies only slowly (e.g.,
algebraically) with time 7, the above conclusion would, of
course, not be changed qualitatively; the above argument
being linear, consideration of a more broadbanded noise
would also lead to an exponential growth. In our opinion
this phenomenon may shed a new light on the way exper-
iments could be interpreted when some external noise is
acting (i.e., quite often): even the thermal noise could be
non-negligible ultimately in actual flames, as well as trun-
cation and roundoff errors in numerical simulations.

At the present stage, it is tempting to take a pause and
to try comparisons, even if only rough ones, with experi-
ments. With this aim in view, we will consider the classi-
cal experiments of [19] on weakly turbulent expanding
flames and, more specifically, we first consider the pro-
pane air flame slightly rich in fuel shown in picture 8.4
therein, for which the equivalence ratio r=1.16 and
u; =40 cm/s; if one assumes that the turbulence decay
“far from the flame” is not much affected by the large-
scale blast flow generated by the flame, the integral and
Taylor scales can both be estimated to be close to 0.15 in
from the given data on the grid-generated turbulence,
from the flame center trajectory, and from the known de-
cay of grid turbulence [36]. We will thus take
2mw/k,=0.15 in. Eyeballing the experimental results re-
veals that the corresponding front wrinkles are about 3-in
to Z-in in wavelength, so that k,, /k, roughly ranges from
+ to 1; this figure is compatible with the above analysis.
We next note that actually (6.13) and (6.14) only depend
on the parabolic dependency of the linear growth rate
(6.12) pertaining to the planar flame upon the spatial
wave numbers; the equality ku=1 may thus be interpret-
ed as approximately giving the corresponding actual mar-
ginal wave number. According to the above estimates,
0.15 in (=0.36 cm) should roughly correspond to k, u=1,
since 4 or 5 are not that far from 4.9. An independent
check is provided by a priori calculations [37,38] which
indicate that the marginal wavelength of the planar prob-
lem may be estimated as about 60D, /u; for ¥ =0.8 and
propane-air flames slightly rich in fuel with a Markstein
number of about 4; with u; =40 cm/s and D, =0.2
cm?/s, one obtains 0.33 cm, i.e., a number which is
indeed close to 27 /k,=0.36 cm. Finally, we consider
Fig. 7.4 of Ref. [19], which corresponds to about the
same flame radius and k, as above but is associated to a
leaner (r=0.7) and slower (u; =25 cm/s) flame. Since
the Markstein length and the marginal wavelength of
lean or not too rich propane-air flames markedly increase
as both r and u; decrease [39], one would reasonably ex-
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pect uk, > 1 for the last experiment; on the basis of (6.13)
and (6.14), a larger value of 27 /k,, than previously and a
smaller ratio k,, /k, should then result. This is compati-
ble with the observed trend. The above reasoning
somehow suggests that in moderately turbulent, expand-
ing flames, the mixture properties as well as the large-
scale flame geometry and its evolution could all contrib-
ute noticeably to the selection of an integral length of
wrinkling, besides turbulence itself.

One has to stress, however, that these linear estimates
are rather crude and that nonlinear mode-mode interac-
tions may lead to quite different pattern wavelengths
from what could be inferred from a linear analysis. The
fact that nonlinearity, the subject of the following sec-
tions, could play a role even at the visual onset of “spon-
taneous” instability is quite likely: the first cells which
appear experimentally indeed have sharply contrasted po-
lygonlike contours, thereby indicating that noticeable
mode-mode couplings are already at work. The above
predictions, though encouraging, should thus be con-
sidered accordingly.

VII. POLE DECOMPOSITION

We have been unable to solve exactly the fully non-
linear, two-dimensional equation (4.9). The next remark,
however, will prove to be useful for our purpose. As

8(a)a?+b2)2=8(a)lb| ,
writing ®(7,0',0"') in the form

®(1,0',0")=F'(1,0")+F"(1,0")+2u'In(7/7() (7.1)

leads to the conclusion that F' and F’' then satisfy the
same, one-dimensional equation

1 1
F,+—2?F02—_—-%FM+:I(F,0) :
Here, o (F) stands for o’ or ¢’ (F' or F'’) and the nonlo-
cal operator I(,0) again is the multiplication by |K| in
the Fourier space conjugate to . Using the above form
of ®, for which (4.9) separates, undoubtedly constitutes a
special choice. One has to note, however, that the polar
coordinates o',0" which have so far been used are arbi-
trarily oriented (as is the orientation in a tangent plane to
the expanding flame) since no preferred direction exists.
As pointed out in [20], cells appearing spontaneously
should have the shape of regular curvilinear polygons
(triangles, squares, hexagons, etc.) in the absence of
symmetry-breaking effects. Though hexagons would cer-
tainly be aesthetically preferred, a rectangle is the most
general two-dimensional angular domain for which we
have so far been able to study Eq. (4.9). For an identical
shape of the integration domain, a comparison between
analytical and numerical results [1] reveals that a separa-
tion of variables similar to (7.1) gives meaningful solu-
tions for the MS equation. One has also to recall that the
orthogonal patterns implied by (7.1) are not that different
from what is locally observed in reality (e.g., see [20], Fig.
5)—hence, our choice. We next note that no reason ex-
ists why o' and o should play different roles when the

(7.2)
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most general initial conditions compatible with (7.1) are
used; it is then sensible to further assume

F'(r,)=F"(7,)=F(1,) . (7.3)

Along the same lines, it is reasonable to study (4.9) over a
square and with periodic boundary conditions, because
the spherical patch corresponding to O(1) values of o'
and o' is completely anonymous and what happens
along its boundary should be as independent as possible
on directions and arclengths.

In addition to being one dimensional, and hence
presumably simpler to study than (4.9), Eq. (7.2) has the
further pleasant property that exact solutions which are
27 /K periodic in o can be written in terms of known
functions. They correspond to

IN
F,(1r,0)=—uK 3 cot

a=1

“lo—o7)] ]| . (7.4)

2

The o,’s can be identified with the poles of F in the
complex o plane, and they ought to appear in conjugate
pairs in (7.4) for F(7,0) to be real when o is. In addition,
in order that (7.2) be satisfied, the o,’s must evolve ac-
cording to coupled, ordinary differential equations
(a=1,...,2N):

LS

d=j£zcot )

= — £ sgnltm(o )],
B#a

(O'B_U'a)

(7.5)

where 6 ,=do,/d7 and Im(c,) stands for the imaginary
part of o,. The above equations are readily demonstrat-
ed by adapting the results obtained by Lee and Chen [26]
for models of plasma instabilities, or those obtained by
Thual, Frisch, and Henon [27] for the MS equation (1.1)
itself, to the present situation (Renardy [40] and Minaev
[41] independently obtained particular cases by alterna-
tive methods). This basically requires first noting that the
terms which involve F,2 and F,, have the same explicit
dependence on time (here, 1/ %), so that their most diver-
gent contributions in each cell (in the complex o plane)
again automatically cancel one another, in much the
same way as they did in the MS equation. In physical
terms this corresponds to the fact that curvature is able
to smooth out the sharp crests that are invariably gen-
erated by a Huygens-like propagation. Next, one may
remember the functional equation (a mere trigonometric
identity) fulfilled by cot( ), viz.,

fla)f(b)+1+f(a—b)[f(a)—f(b)]=0, a¥*b .
(7.6)

Using it with a=K(0—0,)/2 and b=K(oc—o0g)/2,
(a#PB) indeed allows one to transform the remaining
nondiagonal terms obtained when plugging (7.4) into F 2.
The final step is to note that, when applied to
cot[K(o0—o0,)/2], the nonlocal operator appearing in
(7.2) is about the same as a differentiation, apart from a
multiplicative coefficient (+i) that depends on the sign of
Im(o,) and from an additive constant: this is so because
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the Fourier transform of cot[K(oc—ao,)/2] has a one-
sided support. As for the additive constant, it is akin to
an effect which is very familiar to fluid mechanicists:
whereas a simple line source of fluid yields a flowfield
which decays radially to zero, a linear array of sources
produces a stream at infinity.

Once the total number (2N) and the initial locations
[o4(7)] of the poles are specified at some positive initial
time (7y), and if values are assigned to the ‘“Markstein
constant” u and to the harmonic number K, the pole tra-
jectories are fully determined, thereby in principle allow-
ing one to compute the evolutions in flame shape via an
integration of (7.5). The mean flame speed variations
(—®,) can be computed upon averaging (7.2) with
respect to the angular variables. This gives

u |1
<—¢T)=——$—+—;(F02), (7.7)
since the solutions are periodic in 0’ and o’’ and because
we assume that ¢’ and o' play identical roles; if the
flame shape disturbance were to depend only on o’ (or
o""), the contribution of F,2 to (7.7) should be halved.
Equation (7.7) clearly displays two distinct, possibly anta-
gonistic influences on the mean flame speed: a mean cur-
vature effect, the sign of which is fixed by p’, and the in-
crease in flame area induced by the instability.

Using (7.4) into (7.7), one may next show that

r N .
(_Q)T):__ZH’__.J'_"W’NK 1_‘“NK+'LZB(1 ,
T T T N Z,

(7.8)

where the positive, real numbers B, (7) are the imaginary
parts of the poles of F, that are located in the upper
half-complex plane. When applied to the MS equation it-
self, the algebra leading to (7.8) also works for any pole-
decomposable solution to (1.1) and yields a “nearly pla-
nar” analog to (7.8), viz.,

N .
(—¢,)=2ukN 1—,ukN+—117 S b, |, (1.9)
a=1

where 27 /k is the (spatial) period and the b,’s refer to
the poles of ¢y; beside illustrating the differences between
the nearly planar and the nearly spherical configurations,
the above result generalizes a formula previously ob-
tained in particular case [28] and is fully compatible with
the infinitely many bifurcations evidenced by Renardy
[40] concerning the steady MS equation. At any rate, Eq.
(7.8) is convenient for computing { —®,) in terms of a
minimum number of currently available quantities while
numerically determining the pole trajectories.

In addition to appearing—with the 1/7 factors
suppressed—in the context of the MS equation [27],
equations similar to (7.5) have recently been shown to
control the evolution of wrinkles of finite amplitude su-
perimposed to a nearly parabolic steady flame [17]. The
main difference between the latter case and the present
one was the replacement of 1/7 in (7.2) and (7.5) by the
rapidly decreasing function of time: e 5", §>0. The
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functional difference between the two cases reflects the
different ways in which the wrinkles are stretched. The
analogy between (7.2) and the governing equation for
nearly parabolic, steadily propagating flames is best
displayed if one again introduces the arclength X =07
and the notation @¢(X,7)=F(X/7,7). This transforms
(7.2) into

¢+ %X¢X+%¢X2=M¢XX+I(¢,X) . (7.10)
In the case of nearly parabolic flames, the pseudoconvec-
tive term X¢y had the time-independent trough curva-
ture S >0 as a factor, in lieu of 1/7.

VIII. EXAMPLE OF NONLINEAR
FLAME DYNAMICS: N =1

To begin with, we consider the simplest situation, in
which only two poles 4 +iB are involved in each sector
of 2w/K angular extent; B may be assumed positive,
without loss of generality. Equations (7.4) and (7.5) then
give A =0, so that the disturbance stays angularly fixed,
and

F,=—2uK sin[K(oc— A)]/{cosh(KB)

—cos[K(c—A4)]}, (8.1)

p=EK kB )—% . 8.2)

2
At early times (7<<1) the first term in the right hand
side of (8.2) clearly dominates, since coth(KB)> 1.
Therefore, B >0 for 7 <<1 and the disturbance amplitude
first decays, in accord with the linear initial value analysis
of Sec. VI; the Landau-Darrieus instability, which gives
the last term in (8.2), only plays a secondary role during
this early period of time, and the dynamics is then
Burgers like. We next consider the situations in which
0<KB <<1 and 7 is finite; because B is again positive
[coth(KB)~1/KB >>1], B cannot vanish when 7 is
finite. Lastly, we tentatively assume that B may remain
different from zero even for 7= co; if true, this assump-
tion would imply B(7>>1)= —Int+const by Eq. (8.2),
thereby leading to a contradiction since B would have
vanished at least once. The only remaining possibility is
thus B(71<®©)>0, B(w)=0. From (8.2) one then
deduces

B(r— 0 )=uK /7+0(1/7%) . (8.3)

By contrast to what happened to the periodic, two-pole
disturbances of parabolic flames [17], for which the 1/7
factors in (8.2) were replaced by the integrable function
e 5" (§>0), the present, geometry-induced time-
dependent stretch has a final rate that is too low to
prevent B from going to zero. Equation (8.3) is valid
whatever the values assigned to u, K, B(7), and 7. The
above conclusion about B(7) can be reformulated in
terms of the reduced, peak-to-peak amplitude I'(7),
defined by



30 NONLINEAR HYDRODYNAMIC INSTABILITY OF EXPANDING . ..

20(7)=F (1) —F gy (1)

and satisfying

I'(7)=2uIn{coth[KB(7)/2]} . (8.4)

According to (8.3), I'(r) always diverges as 7— oo,
though mildly: I'(r— o )=0(In7). That I'(7) and the
instantaneous wavelength 277/K ultimately evolve in
logarithmic proportions can be related back to the fol-
lowing two properties.

(i) B(7)—0 implies that each pole of F, ultimately
mainly interacts with its complex conjugate in its own
cell (rather than with its images and their conjugates in
neighboring cells), and the solution locally approaches
the nonperiodic, two-pole elementary crest.

(i) The latter nonperiodic, two-pole solution to (7.2)
has an amplitude F(o,7) which diverges logarithmically
with real distance from the poles [27]. The basic reason
is that the Green’s function of the two-dimensional
Laplace’s equation is a logarithm.

Although the absolute amplitude I'(7) diverges (Fig.
6), the relative amplitude C(7)=T'(7)/7 ultimately de-
cays to zero, though at a very slow pace: C(7)~7 'Int
(see Fig. 7). The above findings are in qualitative agree-
ment with what is observed in reality [19,20]—at least
during the “not-too-late” evolutions of “spherical” flames
in quiescent gases: the sharp flame shape disturbances
that are presumably created initially by the electrodes
soon form ridges or “cracks” which approximately stay
at fixed angular locations while their relative amplitude
slowly decreases to zero. These results, however, contra-
dict those of the linear analysis of the initial value prob-
lem given in Sec. VI A, because C(7) is now predicted to
decay to zero whatever the values assigned to u, K, 7,
and C(7y). Of course, it could be argued that a two-pole
solution has nothing to do with the one-mode distur-
bances of infinitesimal amplitudes which we considered in
Sec. VI A; this is not true. Indeed, integrating (8.1) yields

F(r,0)=h(7)—2uln[1—cosK(oc— A)sechKB], (8.5)

where the magnitude of the ‘“constant” of integration
h(r) is determined by h,~(F,%). For KB>>1, the
above expression leads to

F(1,0)=4ue XBcosK(o— A)+ - - . (8.6)

1 I'(7)

FIG. 6. Peak-to-peak amplitude I'(7) of a two-pole-per-cell
solution to Eq. (7.2), for 7y=1, I'(7y)=1, and different K’s.
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FIG. 7. Relative amplitudes C(7)=I'(7)/7 corresponding to
Fig. 6.

Given (8.4), this is nothing but (6.1), so that the pole
decompositions play the role of nonlinear Fourier trans-
formations. In our opinion, the typically nonlinear effect
leading to the results plotted in Fig. 8 and to the
difference with Fig. 2 may well be one of the reasons
linear analyses of the initial value problem underestimate
the flame radius at the “visual” onset of instability, con-
sistent with the remark made by Zel’dovich et al. [5],
about this point, because the (early) growth of C is slower
than expected, due to the stabilizing nonlinear effects. A
small departure from sphericity [C(7) <<1] does not im-
ply that the assumption of a small amplitude is applicable
[T(r)>>1]. Figure 8 also suggests that a frequently used
argument [5,23], according to which the onset of instabil-
ity should actually be defined as the time when C(7)
resumes its initial value C (1), instead of 7,, is somewhat
artificial: in some cases, C(7) always stays below C(7).
One must nevertheless acknowledge that using only two
poles may lead to a quite peculiar solution, and that more
general disturbances should be considered.

Im(o)
0A+iB B >>1
A‘S‘Bl AxtiBy
OA»+B; om
!7
-n/K +/K Re(o)

FIG. 8. Initial pole locations (only the upper half of a com-
plex cell is shown) corresponding to the (2N +2)-pole situation.
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IX. NEXT EXAMPLE: 2N +2 POLES

We now consider situations in which the ‘“‘unper-
turbed” background flame shape is no longer perfectly
spherical initially but already includes the wrinkles of
finite amplitudes due to 2N preexisting poles 4,*tiB,
[ea=1,...N; KB,=<0(1); B,>0]. An extra pair 4*iB,
with B >0 and KB >>1, is also involved and represents
an extra wrinkle of small amplitude (Fig. 8). Using (7.5),
and the fact that

O<tanh[K(B*B,)]=1
for any a, one deduces an approximate equation for B(7):
B=QN+1)Kpu/?*—1/7, 9.1)

which may be used whatever the phases 4, and 4. Asis
shown by comparing (9.1) to (8.2), the preexisting
disturbance(s) tend(s) to delay the growth of the extra
wrinkle, as a consequence of nonlinear pole-pole interac-
tions. Though small, the contribution of the substructure
to the flame shape is not directly amenable to the linear
analysis reported in Sec. IV A; in more physical terms,
one could say that the preexisting extra curvature
modifies the way in which a new wrinkle evolves. A com-
parison of (9.1) to the large-B limit of (8.2) readily shows
that the relative amplitude corresponding to (9.1) follows
an equation similar to (6.4), but with u replaced by
(2N +1)u. The analog of C =0 is now obtained when

r=Q2N+1)uK?*/(K—1),

instead of (6.6), and the onset of (secondary) instability
corresponds to 7, =4u(2N+1), instead of 7,=4u, ...
according to Istratov and Librovich’s criterion. Because
the above result is independent of the phases
Ay, ..., Ay, it indicates that angularly localized initial
disturbances, such as those impressed by electrodes, may
shift the onset of small-scale instability to larger flame
sizes than what is predicted by (6.4). This holds even if
the preexisting disturbances of finite amplitude only have
a small relative amplitude: it suffices to consider the case
of N =1, for example, which leads to I'(7)/7~In7/7<<1
in the long time limit but nevertheless yields 2N +1=3,
and hence triples the effective 7.
As long as KB >>1, one may integrate (9.1) into

KB=KB(1)—In(t/7)X +uK22N +1)(1 /70— 1/7) .
9.2)

For the extra wrinkle to acquire a noticeable amplitude
[corresponding to KB =0(1), say], one must wait until

(r/74)> O |exp B('TO)+‘L:_£(2N+1) , 9.3)
0

i.e., 7>>7, even if B(7y) and N are only moderately large.
As a by-product, (9.3) also suggests that strong, localized
initial disturbances (N — o ) may well be linearly stable.
To summarize, one may say that preexisting disturbances
inhibit the growth of extra ones so strongly that the help
of external forcing is likely to be needed if everlasting cell
splitting is to be obtained.
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X. PETAL-LIKE PATTERNS AND THEIR STABILITY

In the limit of long wavelengths, the physically
relevant steady solutions to the MS equation (1.1) acquire
a shape which is independent of scales and have a peak-
to-peak amplitude of wrinkling that increases proportion-
ally to the wavelength itself, by contrast to the two-pole
periodic solutions for which the amplitude only grows
logarithmically. The corresponding scale-independent
shape can be computed numerically from a truncated MS
equation [42] in which curvature effects are neglected; al-
ternatively, it can be obtained analytically [27] for it for-
mally corresponds to a steady continuous distribution of
poles that are aligned along a parallel to the imaginary X
axis in each complex cell.

Guided by the analogy with the planar case and be-
cause the wavelength of wrinkled expanding flames grows
linearly with time, one is naturally led to seek solutions to
the “spherical” MS equation (7.2) in the following form:

F(r,0)=71Fy(o)to(r), T— 0 . (10.1)

These correspond to asymptotically self-similar, “petal-
like” cells (Fig. 9) whose absolute amplitude is proportion-
al to T, by contrast to the corresponding two-pole solu-
tion (8.1) for which the logarithmic growth I'(7) ~In7 was
obtained. For 17— oo, substitution of (10.1) into (7.2)
gives the truncated equation

Fo+4(Fy, )*=I(Fy,0), (10.2)

which holds far from the crests. When integrated over an
angular sector [ —#/K,m/K] with periodic conditions
on F, (10.2) yields wrinkled shapes that depend on K; for
K — «, Fy~1/K and F, tends to the solution pertaining
to the “planar” case, up to dilations. We did not attempt
to accurately describe Fy(o;K) in detail, because it is
enough for our purpose to note that the following
behavior:

Fo,(0;K)=s(K)o+0(o*), s(K)>0, s(0)=0,
(10.3)

holds close to a trough (located at o =0, without loss of

petal-like pattern

FIG. 9. Asymptotically self-similar, “petal-like” pattern, Eq.
(10.1), and secondary wrinkles.
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generality).

To study the stability of these petal-like solutions, we
proceed in the same way as we did [17] for nearly para-
bolic flames—namely, the general solution to (7.2) is
written as

7Fylo,7)+ flo,7)+ -+,

where F is given by (10.1) and f represents subwrinkles

of smaller scale for which curvature effects may be non-

negligible. For large values of 7, the evolution of f close

to the (wider and wider) troughs of the basic solution
(10.1) is then approximately governed by
A oy s o4 1

fots gl oo =B o+ 1fi0), (104

because F, ~70s(K) locally. Once linearized, (10.4) is
readily solved to give the elementary particular solutions

f=g(r)explik(t)o], (10.5)
with
K(T)=k(To)(70/TF (KgyTo>0) (10.6)
(u)
g(r)=g(7y)exp fOK: wlu) dul . (10.7)

Two results worth noting can be gained from (10.6) and
(10.7). The first is that the subwrinkles have an instan-
taneous wave number «(7)/7 which decays to zero faster
than 1/7, whatever the exact value of the additional rate
of tangential strain (s >0) induced by the curvature of
F,. For the same reason, the substructure amplitude sat-
urates as 7— oo; this is perfectly compatible with (9.3),
because the self-similar cells formally correspond to
N=oo. In other words, the petal-like patterns are linear-
ly stable, unlike the expanding spherical flame. The final
amplitude pg( « ), readily computed from (10.7), is max-
imum if the initial disturbance wave number «(7)/7,
satisfies pky/79=1+1/(2s); g( 0 ) then reads

g(o)=g(7o)exp[ 7o 1+2s)/4us?] . (10.8)
Consequently, the amplitude will remain small
[g( )< O(u), say] if g(7,) meets the condition
g(1g)<0(g.), g.=pexp[—7o(1+2s)/4us?]. (10.9)

Though linearly stable, the self-similar pattern becomes
more and more sensitive to disturbances as time elapses;
even the ever present thermal noise (as well as roundoff
errors in numerical experiments) would ultimately trigger
the appearance of substructures in expanding flames.

One can next see what happens if g(7;) markedly
exceeds g.. In a sense, (10.4) is in effect a local restriction
of (7.2) and, as such, it can also certainly be solved by the
pole-decomposition method. Writing f,(7,0) in the
form

fo=—uK 2 cot -(c cy)

a=1

(ko>0, n integer) ,

(10.10)
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with c=0/7*=X/7"*! and ¢,=a,+ib,, indeed results
in equations similar to (7.5) for the complex poles c, of
f 4> the only, but crucial, structural difference with (7.5)
consists of the replacement of 1/7 by 1/7°*!. For exam-
ple, the simplest periodic subwrinkle (n=1, ¢, =a +ib,
¢, =a—ib, b >0) has its dynamics governed by a =0 and
[compared to (8.2)] by

p=-L ¢2+2 2 cothlkgh )~ — L. (10.11)
Because 1/7° ! is integrable at 7= oo (like ¢ ~57 but un-
like 1/7), b( ) may remain bounded away from zero if
b(7y) is large enough (small initial amplitude), consistent
with (9.1); alternatively, b (7) decays to zero like 1 /7' 75 if
b(7y) is less than a critical value b, (7g,kq,1,5). When the
latter condition—a nonlinear analog of (10.9)—is met,

the amplitude g(7) grows limitlessly with 7, because
g(7)=2uIncoth[kyb(7)/2] .

The above results suggest that the petal-like cells of a
steadily expanding flame are metastable at the most, the
critical amplitude ~g.(7y) of disturbance needed to
trigger the growth of extra substructures of finite ampli-
tude being an exponentially decreasing function of time 7,
at which those extra disturbances are imprinted. Of
course, the petals with wider troughs (K << 1, and hence
0<s<<1) are especially vulnerable. To conclude this
section, it is again suggested that some noise is needed to
induce cell splitting and that any noise will ultimately
have an important influence.

XI. GENERAL 2N-POLE DYNAMICS

When many interacting pairs of poles are involved in
each cell, several mechanisms are simultaneously at
work—namely, the Landau-Darrieus instability, which
tends to push each pair of poles against the real axis and,
therefore, to produce real logarithmic singularities in
F(1,0), i.e., spikes pointing towards the burned gases;
the interaction between complex conjugate pairs, which
suppresses the aforementioned singularities (see the two-
pole solutions), and smooths out the front crests; the
wavelength stretch induced by expansion, which tends to
make each crest move apart from its neighbors; and the
tendency of poles to form alignments along the imaginary
o axis, which tends to reinforce the biggest wrinkles.

The last effect was first evidenced by Thual, Frisch,
and Henon [27]. It explains why the MS equation leads
generically to a single steady fold with the maximum
available wavelength, and is also a consequence of the
pole-pole interactions, i.e., of nonlinearity (it is the focus-
ing effect due to F‘,Z, which exists even in the inviscid
Burgers equation). It also acts in the present case.
Indeed, when two poles 0,05 are momentarily very
close to each other in the upper ¢ plane, Eq (7.5) leads to

o =2

; 2 1
e a+_](1') ,

= +
gg= Y jlr),

(11.1)
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where j(7) is common to o, and o, and results from in-
teractions with the other poles. From (11.1) one has

(0a—0gl=8u(l/1—1/79)+¢, (11.2)

where € is a small complex constant [the value of
(0,—0p)? at 7=75]. When 7 is not large, o, and oy
remain close to each other during a short period of time
(a collision at T7==T,, in a sense) so that one may then
write
(UG—UB)ZE—%(T"TO)+E . (11.3)
0

In the same way as in the case of the MS equation, the
two poles tend to attract each other in a direction parallel
to the real o axis and repel each other along the imagi-
nary axis (Fig. 10); given the structure of (11.3), this
occurs faster when 7 is small. The mechanism certainly
tends to build the aforementined pole alignments again
(now in the o plane), and to reinforce the sharpest, preex-
isting disturbances. When 7 is large, however, the ap-
proximation leading from (11.2) to (11.3) fails. Though
very efficient at early times, the above mechanism is
headed to be quenched in the long time limit, since 1/7
goes to zero in Eq. (11.2). This is so because the tendency
to form vertical alignments in the o plane is counteracted
by the flame expansion, which tends to make the distur-
bances move away from each other in the X plane
(X =o7); this can be seen by writing X;=70; (i=a,fB),
which transform (11.1) into
d 2

‘—j;ura—,x’ﬁ)2= —sp+7(xa—xﬁ)2 .
Ultimately this leads to (X, —Xz)*~7* and hence to an-
gularly separated crests.

The overall outcome of these 2N-body interactions is
rather difficult to predict analytically in the general case
and, so in order to have more information, we integrated
(7.5) numerically. In the absence of any specific informa-
tion, we used an irregular initial condition on F. To con-
struct a 27 /K-periodic, noiselike initial condition of
small amplitude F(7y,0) which is pole decomposable and
has an almost flat, angular energy spectrum for all har-
monic numbers less than (M +1)|K| in absolute value,
one may consider

(11.4)

, Im(Gq - op)
T oc/
c
=1 B | center of mass
S/ Re(oa - OB)
o
Ca T="T,
1o
/
i

FIG. 10. Near collision of two poles 0,,0 4 as seen from their
“center of mass,” Eq. (11.2).
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M
F(r,0)=—2u 3 In{1—sech(KB)cos[nK(c—A4,)]} ,

n=1
(11.5)

where K >0, B >0, and the A,’s are samples at random
uniformly over [0,27]. If KB >>1 and o is real, (8.6) in-
dicates that

M
F(1g,0)=4pe X8| 3 cos[nK(o—4,)]+0(e ¥B) | .

n=1
(11.6)

On the other hand, (11.5) corresponds to M linear rows of
poles (plus their complex conjugates) which are aligned
along M parallels to the real o axis. Specifically, the nth
pair of rows contains poles that are located (Fig. 11) at

0=A +—F—xi—, m=12,...,

Ik T (modn) .

(11.7)

Using an n-dependent value of B in (11.5) would allow
one to mimic any initial spectrum over the range
[—M|K|,M|K]|] of angular harmonics.

The pole equations (7.5), endowed with (11.5) as initial
condition, were integrated by a numerical routine
(fourth-order Runge-Kutta, variable step size). Typical-
ly, p=1 and M =10 [hence, 2N=M(M +1)=110] were
employed. We took 73=1, i.e., is less than the time of
“instability onset” corresponding to the Istratov-
Librovich criterion. We chose K =1 because this gives
twice the angular sector corresponding to the “most
dangerous” mode K,=2 which the normal-mode
analysis singled out in Sec. VI A. As for KB, we adopted
KB =5, so that e KB =L is indeed small. The relative
amplitude C(7) is now defined as 27C(7)=F_,, —F ..
A dynamics imitating a repeated cell splitting would
manifest itself by a regular “rain” of poles towards the
real axis, in such a way that the mean spacing between
front crests would be approximately constant in time.

Figures 12 and 13 show a few typical consecutive

Im(c)
® A +iB 1st row
As+iB/2 A+iB/2+1/K
° ) | 2nd row
Aa;-iB/B A3+IB/3.+4TEI3K | 3rd row
Am+iB/M+21/MK
e e - @@
/K +1/K Re(0)

FIG. 11. Pole locations (only the upper half of a complex cell
is shown) corresponding to the irregular, M-row initial condi-
tion [Eqs. (11.5) and (11.6)]; the phases A4, ..., Ay were sam-
pled at random uniformly on [0,27 /K ].



FIG. 12. Successive snapshots of the pole population ob-
tained from integration of Eq. (7.5) with 7,=p=K=1, M =10;
only the upper-half of a complex cell is shown. (a) 7=71,=1, (b)
7=1.111, (¢) 7=30, and (d) 7=650.

snapshots of the pole population. Very quickly, all the
imaginary parts B,(7) increase, so that C(r) decays;
meanwhile, the poles tend to aggregate in chainlike struc-
tures parallel to the imaginary axis, in accord with what
(11.1) indicates. Then comes a time r=4=7, at which
time the smallest B starts decreasing, but one has to wait
until 7=8 before C(7) reaches a minimum and until
72220 for it to acquire a value comparable to C(1). Only
when 7==100 does the front display sharp crests and wide
troughs; 7=100 also corresponds to C(7) reaching its

Ba(T)
L 12 to 54
- 11
/\/ 10
10 - /—_\
1+ :
]
0 1 Ly 1 111 1
0 1 10 102 103 =

FIG. 13. Trajectories of the pole imaginary parts B,(7)
(a=1,...,55) in upper-half o plane (same conditions as in Fig.
12).
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(D) oo o8 £l0? ¢ oo . & glO? (same conditions as in Figs. 12 and 13).
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A ’ . _10 L a° [ 10 maximum, Fig. 14. As for the more remote poles, they
° . £ . °E qualitatively behave as predicted in Sec. IX: the larger
° i E ° . their imaginary part, the slower the poles approach the
. L ° L real axis. Even for very long times (7< 100), only three
. o rl oot to four (pairs of) poles effectively acquire O (1) imaginary
0 OA - 5 0 parts; halving K, i.e., effectively doubling the front arc-
2 Aq(1) T Aa(T) length, merely doubles the number of poles that ultimate-
o " ly participate to the flame shape for 7< 100, hence the

number of crests belonging to the ‘“first generation” of
mature crests. Increasing the number of rows to M =25
did not seem to change the conclusion. The above results
are very preliminary and more systematic studies should
be undertaken, but they do suggest that no tendency to
repeated cell splitting spontaneously occurs over the
periods of time which we considered, even though those
noticeable exceed the time r, =4pu selected by a normal-
mode analysis and the criterion proposed in [22]. In-
stead, a single “generation” of wrinkles is obtained for
7=0(257,) and its very appearance strongly delays the
buildup of extra crests.

XII. CONCLUDING REMARKS

In the conclusion to their work [19], Palm-Leis and
Strehlow wrote that “... our understanding of the propa-
gation of transient curved flames is incomplete at the
present time. Further work on both transient and steady
curved flames, as well as on inherent and driven instabili-
ties, is needed before a quantitative understanding of even
the simplest turbulent flames may be obtained.” Despite
the numerous theoretical or experimental works which
have been devoted to the subject since that time, one may
reasonably acknowledge the fact that the above state-
ments are still partly true. It is our hope that the present
analyses contribute to filling the gap.

A time-dependent generalization (4.9) of the MS equa-
tion was derived as a tool to study the dynamics of nearly
spherical, expanding wrinkled flames. In the linear
domain it basically reproduces what classical analyses
gave as result: ultimate algebraic growth of each angular
mode of infinitesimal amplitude; existence of a particular
mode, the relative amplitude of which has the shortest
time of decay 7,; and equality between 7, and the re-
ciprocal maximum growth rate of perturbations of nearly
planar fronts. Our evolution equation has a further ad-
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vantage in that it gives access to the dynamics of wrinkles
of finite amplitudes through a 2N-body problem for the
complex singularities of the flame front shape, thereby al-
lowing a few specific effects of nonlinearity to be evi-
denced: ultimate logarithmic growth of elementary
crests, metastability of self-similar patterns, quenching of
the crest coalescence process by expansion, and existence
of a first generation of sharp wrinkles appearing notice-
ably later than 7, (typically at r=257,). All these
nonlinearity-related trends qualitatively suggest why a
linear analysis notably underestimates the time of visual
onset of instability in expanding flames, and are compati-
ble with the experiments, for “not-too-late” evolutions.

However, we cannot ignore one disappointing con-
clusion: the pole-decomposable solutions (7.4) to (7.2) in
the form in which we have exploited them so far, did not
account for the endless phenomenon of cell splitting
which is often experimentally observed [20,34] as flames
keep on expanding. In a sense, this is a perfectly logical
result in the framework of (7.1) and (7.2) because, when
finite, the total number (2N) of involved poles is a con-
stant of motion for (7.2): therefore, the maximum number
(N) of isolated ridges that they can produce is clearly too
small to evenly cover the surface of an ever growing
flame with wrinkles of constant average wavelength.
Even worse, no obvious trend of transient cell splitting
showed up during the preliminary numerical runs report-
ed in Sec. XI. If one still believes that (4.9) is a model
equation qualitatively suitable for use as a starting point
(as supported by the work of [47]), one can conceive a few
hypotheses (1)-(4), which we briefly examine below,
about the origin of this deficiency and ways of under-
standing it.

(1) The pole-decomposable solutions to (7.2) could be a
class that is too restricted and accordingly cannot imitate
the flame behavior as 7— o, that is, when the front gets
locally planar. Though this is a possibility which seems
plausible, the following remarks are due: Except if F al-
ways has to be an entire function (but this cannot be true,
as pole-decomposable, exact solutions can be used initial-
ly), F,(7,0) must diverge at singularities of some kind in
the complex ¢ plane; otherwise, it would be a constant,
according to Liouville’s theorem on bounded analytic
function [43]. Given the form of (7.2), we found it
difficult to imagine a different locally dominant balance of
its mostly divergent terms from that leading to movable
simple poles with the same residue (= —2pu); in addition,
if analytic and bounded, the difference between F, and its
pole-decomposed form would also be a constant; again
due to Liouville’s theorem. The pole-decomposable solu-
tions thus seem to be quite viable ones, except if the gen-
eral solution to the evolution equation always possesses
an entire component when the initial profile is not pole
decomposed. The last remarks point out the very
difficult problem of pole “creation” from an entire initial
function [e.g., F=sin(Ko)] or from an initial condition
such that F, has branch points. The problem has al-
ready been evoked and partially solved about the Burgers
equation, i.e., (1.1) without the integral term, by Bessis
and Fournier [44] who showed that an entire initial con-
dition may immediately evolve to a pole-decomposed
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form. In the case of (7.2) or the MS equation, however,
nothing is yet known [no Hopf-Cole transform [45] is yet
available for (1.1) or (4.9)].

A second, physical argument in favor of the pole-
decomposable solutions is that they are able to describe
(via the MS equation) the structure of a flame that is pla-
nar on average [29], as a spherical flame is locally when
T— o0; it is then difficult to understand why they should
be unable to describe the transition between 7=0(1) and
T= o0, given that they also qualitatively imitate what
normal-mode analyses give in cases of small amplitude.
Equation (7.2) itself could be structurally unable to pro-
duce the phenomenon of cell splitting: a way to check
this hypothesis would be to integrate (7.2) by a spectral or
pseudospectral method and to compare the results with
what pole motions give; this is the subject of current
works [46]. One has to remember that such numerical
methods, though very accurate, are not noise free when
implemented in an actual computer, a fact that could
have misleading consequences (see Sec. VIA, or Ref.
[17]); this remark can possibly explain why [47] recently
succeeded in reproducing repeated cell splitting.

(2) It could be that any realistic dynamics deduced
from (7.2) has to involve an infinite number of poles (per
27 /K cell). Since poles cannot crop up from a smooth,
bounded analytic function (again according to Liouville’s
theorem), these infinitely many singularities must be
present at 7=7;. This possibility is compatible with
both the aforementioned analysis of [44] and with the
presumably irregular, fractal-like structure of any realis-
tic, experimental initial condition. Actually, the conceiv-
able problems due to the finiteness of N were somehow al-
ready present in the linear, normal-mode analysis
presented in Sec. VIA: in order that an endless cell
splitting be envisaged, all the normal modes, including
the highest angular harmonics, had to be initially present.
Sometimes, nonlinearity is sufficient for continuously gen-
erating harmonics of arbitrarily high orders, thereby al-
lowing for a transient subsequent amplification once they
are stretched [35]; in the present case this argument does
not function, at least within the class of pole-
decomposable solutions. One clearly understands, how-
ever, that using N=o in (7.5) leads to noticeable
difficulties. A way to test the above ideas would be to in-
tegrate (7.5) (with larger and larger values of N so as to
account for the finer and finer initial details of the initial
flame shape) and then to extrapolate the results to N = .
Obviously, commuting the limits N— o and 7— o is a
very delicate matter; unfortunately, it is possibly the only
one that really matters.

(3) A “square,” curvilinear domain of integration could
be inadequate. To make the study of (4.9) easier, we as-
sumed periodic boundary conditions and a square in-
tegration domain; then we used a separation of variables.
It is known, however, that hexagons often lead to
different bifurcation diagrams from those pertaining to
square or one-dimensional patterns (e.g, see [48] and to
different mode-mode couplings. Even though a few tran-
sient, hexagonal solutions to the two-dimensional
Burger’s equation can be constructed analytically upon
use of the hopf-Cole trick, we have so far been unable to
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do the same thing for the MS equation or (4.9). On the
other hand, this author does not know how to use spec-
tral methods to integrate (4.9) on an hexagonal domain,
so that exploiting the possibilities implied by (3) remains
an open problem.

(4) External noise, even if of a very small intensity,
would be needed for theory to agree qualitatively with
reality. It is difficult to imagine why this noise should be
compatible with the large-scale, angular periodicity cor-
responding to an O(1), but otherwise arbitrary, sector;
instead a fixed, small-scale, average spatial size is expect-
ed, especially if the noise has a hydrodynamic origin (one
must note, however, that finding the way the blast flow
induced by expansion affects an initially isotropic, small-
scale turbulence is a problem that has yet to be solved).
The linear analyses reported in Secs. IV A and X tend to
suggest that such a noise does have a strong influence.
Since the angular and spatial periodicities are in general
incompatible (due to the identity X =07 and to the con-
tinuous growth of 7), testing this idea with pseudospec-
tral methods could lead to computational difficulties, un-
less a markedly broadbanded noise is employed or the
whole flame surface is handled.

There is yet another way of accounting for an external
noise that would present the above characteristics on
average: it consists of still using (7.4) and (7.5), but with
a time-dependent, increasing number of poles N (?).
Though apparently exotic, this procedure has been previ-
ously proposed as a mathematical trick to study the
response of a “planar” unstable flame to a weakly ‘“tur-
bulent” incoming flow [49]; one may thus envisage using
it here as well. In the present context, this would amount
to studying the following nonhomogeneous version of
(7.2):
FT+#F02=-2‘—::2—FW+%I(F,Z)+ue('r,a) ,
where u,(7,0)—the noise—satisfies {(u,)=0 and is
given by

(12.1)

u(r,0)= 3 8(r—7, ) [¥n(0)— (¥, )],

(12.2)
Y,,(c)=—2plIn[1—cosK (o — A4,,)sechKB,,] .

In (12.2), 0=<4,<2#n/K, B,>0, and 7,>0
(m=0,1,...) are independent, and possibly random, ar-
bitrary parameters. This seemingly complicated formula-
tion is readily understood once one realizes that the
influence of the above shot-noise-like u,(7,0) is merely to
implant new poles (A4, tiB, ) at given times, without
changing the structure of (7.3) and (7.5) between the im-
plants; only N changes, of course, stepwise. When
B, >1, ¢,(0) is a small-amplitude, near-harmonic
function [see (8.5)]; 4,, controls its phase and B,, the
amplitude. In a sense, (12.1) and (12.2) are a nonlinear
analog of (6.7). By contrast to the interesting numerical
work of Chaté [50], which also involved random se-
quences of rapid flame distortions and then of free propa-
gation, the above model also includes some features of
the intrinsic flame instability. Upon use of an adequate
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rate of pole sparkling (via the 7,’s) and of adequately
sampled phases (the A4,,’s), the above model can possibly
statistically reconcile the periodicity in o and the ex-
istence of a constant wavelength of u,. Equations (12.1)
and (12.2) thus lead to a mathematical model to study the
response of expanding flames to turbulentlike incoming
fluctuations; in such a formulation, the flame dynamics
would result from a competition between crest coales-
cence (i.e., pole alignment) and crest nucleation (due to
noise). Given the differences, displayed in Sec. VI, be-
tween an initial value problem and forced dynamics, this
model is worth studying, e.g., in connection with Palm-
Leis and Strehlow’s statement quoted at the beginning of
this section. It is yet unclear, however, whether the aver-
age cell size (if any) will be fixed by intrinsic characteris-
tics of the mixture (as Sec. VI A suggests) or by the noise
properties (see Secs. VIB and X). As a further indica-
tion, which tends to suggest that the influence of an
external noise is, in a sense, similar to adding poles, we
consider the following nonhomogeneous MS equation:

¢+ 132 =pdyy +1($,X)+u,(r)cos(k, X), (12.3)

for the sake of illustration and briefly analyze how a
naive operator-splitting numerical method would handle
it between 7 and 7+87 (67<<1). A first step (the
influence of pure noise) would increase ¢ jumpwise by an
amount u,(7)87cos(k,X), thereby leading to the inter-
mediate shape ¢,; a second step would allow the flame
shape ¢ to relax freely (i.e., under the sole influences of
curvature, nonlinearity, and Landau-Darrieus instability)
from ¢, to ¢(7+87,X). The first step is analogous to the
addition of a pair of remote poles 4 +iB, with

4uexp(—k,B)=|u,|57

and k, A=0 if u, >0, or k, A= if u, <0, because nu-
merical methods do not really allow one to know what
effectively happened to the physics between 7 and 7+ 87;
the second step clearly corresponds to the free dynamics
(8.5). According to the above interpretation, a forcing
term (here, u, cosk,X) would be equivalent to a source of
infinitely many, infinitely remote (§7—0) poles. Though
we do not yet have definitive answers, it is readily con-
ceived that adding poles (explicitly or indirectly via a
noise) is likely to allow for an endless cell splitting of ex-
panding fronts, since the number of “available ridges”
would no longer be bounded. At any rate, the impor-
tance of noise in expanding flame dynamics should be ac-
curately assessed.

The above possibilities are the subject of current works
[46], whose results will be published in due course. We
do realize that pole decompositions are not a panacea;
nevertheless, following Bender and Orszag [45] (p.61), we
do hope that ‘“‘singularity almost invariably is the clue,”
at least to our understanding the way the flames behave.
At any rate the method will furnish valuable, benchmark
results for alternative procedures. The duality
poles—Fourier-modes could also be a valuable guide to in-
tuition. Moreover, even if refinements of the MS equa-
tion and its generalization are needed (e.g., see [51)), it is
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not obvious at all why the pole-decomposition method
should cease to be useful [52].

Our final remark is to emphasize that steadily expand-
ing flames (radius proportional to 7, w=1) are rather
peculiar objects: any faster growth (o > 1) would tend to
inhibit the Landau-Darrieus linear-instability, because
1/7° would then be integrable at 7= o, thereby ultimate-
ly leading to @=1 in the absence of noise; on the other
hand, a slower growth (o < 1) could result in an exponen-
tial growth of wrinkles, and hence in a self-acceleration.
This tends to somewhat moderate the conclusions drawn
in [34] about the mechanism of self-acceleration of large-
scale expanding flames (w=2 > 1, according to their ex-
periments). However, one must not forget the ever
present sources (e.g., thermal) of noise, and acknowledge
that acceleration (w>1) enhances instability through
buoyancy effects (these do not show up at the leading or-
ders in the limit ¥ —0) that could dominate the Landau-
Darrieus mechanism in the long-wavelength limit, but
would vanish as 7— o if @ <2. It is therefore not totally
excluded that small external fluctuations or thermal noise
and buoyancy induced by acceleration are able to main-
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tain an expanding flame in a regime of slightly accelerat-
ed propagation but, clearly, even this innocuous looking
problem of a “freely” expanding flame deserves further
studies. More generally, this suggests that the influence
“of small scales on larger ones,” which the renormaliza-
tion procedures [34,54] currently try to account for, has
to be complemented in the context of moderately tur-
bulent flames by more “mean-field” ingredients, because
large-scale behaviors may modify the local flame dynam-
ics significantly in the limit of long times.
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